Approximation by Compact Operators between $C(X)$ Spaces

David Yost*
Mathematics Department, Institute of Advanced Studies, Australian National University, Canberra, Australia
Communicated by Allan Pinkus

Received July 23, 1984; revised February 25, 1985

A closed subspace M of a Banach space E is said to be proximinal if every $a \in E$ admits a closest point in M, i.e., a point $x \in M$ for which $\|a-x\|=d(a, M)$, the distance of a from M. Many authors have considered the problem of determining whether $K(E, F)$, the space of compact operators from E to F, is proximinal in $B(E, F)$, the corresponding space of bounded linear operators. We attempt to solve this problem for the case when $E=C(X)$ and $F=C(Y)$ are the usual function spaces over compact Hausdorff spaces X and Y. If Y is extremally disconnected, we can completely characterize those X for which $K(C(X), C(Y))$ is proximinal. Except where stated otherwise, our results are valid for both real and complex scalars.

In each case, we will establish proximinality of the compact operators by establishing the $1 \frac{1}{2}$-ball property. Recall that a subspace M has the $1 \frac{1}{2}$-ball property in E if, whenever $a \in E, r \geqslant 0,\|a\|<r+1$ and the closed ball $B(a, r)$ meets M, then $M \cap B(0,1) \cap B(a, r)$ is non-empty. Every subspace with the $1 \frac{1}{2}$-ball property is proximinal, and even more is true.

Proposition 1 [16, Theorem 1.2]. Suppose M has the $1 \frac{1}{2}$-ball property in E. Then there exists a continuous, homogeneous map $\Pi: E \rightarrow M$ satisfying $\|x-\Pi(x)\|=d(x, M)$ and also $\Pi(x+m)=\Pi(x)+m$ whenever $m \in M$.

Proposition 1 generalizes the corresponding result for M-ideals [5]. A number of authors, including $[1,4,10,11,12]$, have established proximinality of $K(E, F)$, for suitable E and F, by showing that $K(E, F)$ is an M-ideal in $B(E, F)$. Rather than repeat the definition of M-ideals, we simply recall that every M-ideal has the $1 \frac{1}{2}$-ball property [17].

Before starting our work, we need the following two observations. They are well known and easy to prove.

* Research supported by a Queen Elizabeth Fellowship.

Proposition 2. The map $T \mapsto T^{*} \mid F$ is a linear isometry from $B\left(E, F^{*}\right)$ onto $B\left(F, E^{*}\right)$ which sends $K\left(E, F^{*}\right)$ to $K\left(F, E^{*}\right)$.

Proposition 3. Let M and N be the ranges of contractive projections on E and F, respectively. If $K(E, F)$ is proximinal (or has the $1 \frac{1}{2}$-ball property) in $B(E, F)$, then the same is true of $K(M, N)$ in $B(M, N)$.

Our first result actually concerns certain spaces of measurable functions. Case (iv) improves a result proved for real scalars by Lau [7, Theorem 6.4]. Case (i) is obviously a special case of (iv), and is stated separately only to streamline the proof.

Theorem 4. In each of the following cases, $K(E, F)$ has the $1 \frac{1}{2}$-ball property in $B(E, F)$:
(i) $E=l_{1}(A)$ and $F=l_{1}(\Gamma)$ for discrete sets Γ and A.
(ii) $E^{*}=l_{1}(\Gamma)$ and $F=C(Y)$, where Γ is discrete and Y is extremally disconnected.
(iii) $E^{*}=l_{1}(\Gamma)$ and $F=L_{x}(S, \mu)$, where Γ is discrete and (S, μ) is any measure space.
(iv) $E=L_{1}(S, \mu)$ and $F=l_{1}(\Gamma)$, where (S, μ) is any measure space and Γ is discrete.

Proof. (i) This is a trivial generalization of [16, Proposition 2.8].
(ii) If Y is the Stone Čech compactification of some discrete set Γ, then $C(Y)=l_{x}(\Gamma)$, and the result follows from case (i) and Proposition 2. In general, the result follows from Proposition 3 and the fact that $C(Y)$ is the range of a contractive projection on some $I_{\infty}(\Gamma)$ [6, Corollary 11.2].
(iii) This is a special case of (ii). It is worth recalling that a Banach space is isometric to the range of a contractive projection on every superspace if and only if it is isometric to $C(Y)$, for some extremally disconnected Y. Every space $L_{x}(S, \mu)$ has this property. See $[3 ; 6$, Sect. 11].
(iv) This follows from Proposition 2 and case (iii).

Although the proof of [16, Proposition 2.8] was constructive, the proof of Theorem 4 is not.

Now we can give the promised results about spaces of continuous functions.

Theorem 5. If Y is extremally disconnected, then the following are equivalent:
(i) X is dispersed (i.e., every subset contains an isolated point)
(ii) $K(C(X), C(Y))$ has the $1 \frac{1}{2}$-ball property in $B(C(X), C(Y))$
(iii) $K(C(X), C(Y))$ is proximinal in $B(C(X), C(Y))$.

Proof. (i) \Rightarrow (ii). This follows from Theorem 4 and [6, Theorems 8.9 and 8.10].
(ii) \Rightarrow (iii). This is Proposition 1.
(iii) \Rightarrow (i). Feder [2, Theorem 3] proved that $K\left(l_{1}, L_{1}(0,1)\right)$ is not proximinal in $B\left(l_{1}, L_{1}(0,1)\right)$. If X is not dispersed, then $L_{1}(0,1)$ is isometric to the range of a contractive projection on $C(X)^{*}$ [6, Theorems 14.11 and 18.5]. Propositions 2 and 3 then show that $K\left(C(X), l_{x}\right)$ is not proximinal in $B\left(C(X), l_{\chi}\right)$. Since the Stone-Čech compactification of the integers is a continuous image of Y, l_{∞} is the range of a contractive projection on $C(Y)$. Another application of Proposition 3 completes the proof.

It is natural to ask if these results hold without the assumption that Y is extremally disconnected. For the 1-point compactification of the integers, they do not.

Example 6. If the scalars are complex, then $K(\mathscr{C})$ does not have the $1 \frac{1}{2}$-ball property in $B(\mathscr{C})$.

Proof. We follow the notation of Taylor [15, Sect. 4.51]. If $\left(\xi_{1}, \xi_{2}, \ldots\right)$ is any sequence in \mathscr{C}, we let ξ_{0} denote its limit. Each $A \in B(\mathscr{C})$ corresponds to an infinite matrix $\left(a_{j k}\right)$, where $j=1,2,3, \ldots$ and $k=0,1,2, \ldots$, for which $\sum_{k=0}^{x} a_{j k}$ converges as $j \rightarrow \infty$, as does $\left(a_{j k}\right)_{j \rightarrow \infty}$ for $k=1,2,3, \ldots$. If $\left(\eta_{n}\right)=A\left(\xi_{n}\right)$ then, of course,

$$
\eta_{j}=\sum_{k=0}^{\infty} a_{j k} \xi_{k} \quad \text { for } \quad j=1,2,3, \ldots
$$

The norm of A is given by

$$
\|A\|=\sup _{j=1}^{x} \sum_{k=0}^{\infty}\left|a_{j k}\right|,
$$

but there is no simple formula for $d(A, K(\mathscr{C}))$.
Let $\left\{e, e_{1}, e_{2}, \ldots\right\}$ be the usual basis for \mathscr{C}, where $e=(1,1,1, \ldots)$. Define $A: \mathscr{C} \rightarrow \mathscr{C}$ by

$$
A e_{1}=\frac{1}{2} e-e_{1}, \quad A e_{n}=(-1)^{n} e_{n}
$$

for $n \geqslant 2$ and $A e=\left(i+\frac{1}{2}\right) e$. It is routine to verify that $\|A\|<3$ and that $K(\mathscr{C}) \cap B(A, 2)$ is non-empty. However,

$$
K(\mathscr{C}) \cap B(A, 2) \cap B(0,1)=\varnothing
$$

To see this, suppose $T \in K(\mathscr{Z}) \cap B(A, 2)$. Then

$$
\sum_{k=0}^{x}\left|a_{i k}-t_{j k}\right| \leqslant 2
$$

for all j, so

$$
\left|i-1-t_{j 0}\right|+\left|\frac{1}{2}-t_{i 1}\right|+\left|1-t_{j j}\right| \leqslant 2 \quad \text { for } j \text { even }
$$

and

$$
\left|i+1-t_{j 0}\right|+\left|\frac{1}{2}-t_{j 1}\right|+\left|-1-t_{j j}\right| \leqslant 2 \quad \text { for } j \text { odd }, \quad j \neq 1 .
$$

Let

$$
t_{1}=\lim _{i \rightarrow x} t_{i 1}
$$

Since T is compact, $t_{0}=\lim _{j \rightarrow *} t_{j 0}$ exists, and also $\lim _{j \rightarrow \times} t_{j /}=0$. Thus

$$
\left|i \pm 1-t_{0}\right|+\left|\frac{1}{2}-t_{1}\right| \leqslant 1 .
$$

This forces $t_{0}=i$ and $t_{1}=\frac{1}{2}$, so $T \notin B(0,1)$.
The classical sequence space \mathscr{G} seems to have received no attention in the literature. Curiously, we have a positive result (with a constructive proof) if the scalars are real.

Theorem 7. For real scalars, $K(\mathscr{C})$ does have the $1 \frac{1}{2}$-ball property in $B(\mathscr{C})$.

Proof. If $S=\left(s_{j k}\right)$ has the property that, for some $N, s_{j k}=0$ for all $k>N$, then S is a compact operator. Conversely, the set of operators with this property is dense in $K(\mathscr{C})$.

Now suppose we are given $A \in B(\mathscr{C})$ with $\|A\|<r+1$ and $K(\mathscr{C}) \cap B(A, r) \neq \varnothing$, and choose ε so that $0<\varepsilon<r+1-\|A\|$. Then

$$
\sum_{k=0}^{r}\left|a_{j k}\right| \leqslant r+1-\varepsilon
$$

for all j, and also $\|A-S\|<r+\varepsilon$ for some S of the above form. We may also suppose that $s_{j 0}=s$ for all but finitely many j.

Let

$$
a_{k}=\lim _{j \rightarrow \infty} a_{j k}
$$

for $1 \leqslant k \leqslant N$. Then choose M so that, if $j>M$, then $\left|a_{k}-a_{j k}\right|<\varepsilon / N$ and $s_{j 0}=s$. Next, put

$$
\sigma_{j}=\sum_{k>N}\left|a_{j k}\right| \quad \text { for all } j,
$$

and

$$
\sigma=\sum_{k=1}^{N}\left|a_{k}\right| .
$$

We now have, for all $j>M$,

$$
\begin{equation*}
\left|a_{j 0}-s\right|+\sigma_{j} \leqslant\|A-S\|<r+\varepsilon \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{j 0}\right|+\sigma+\sigma_{j}<r+1 \tag{2}
\end{equation*}
$$

There are two cases to consider, depending on the value of σ.
Case I. Suppose $\sigma \geqslant 1$. Then we find $n \leqslant N$ and $\lambda \in[0,1]$ so that

$$
\sum_{k=1}^{n-1}\left|a_{k}\right|+\lambda\left|a_{n}\right|=1
$$

Put

$$
s_{k}=a_{k} \quad \text { for } \quad 1 \leqslant k<n, \quad s_{n}=\lambda a_{n}
$$

and

$$
s_{k}=0 \quad \text { for } \quad k>n \quad \text { or } \quad k=0 .
$$

Then, for $j>M$,

$$
\left|a_{j 0}-s_{0}\right|+\sum_{k=1}^{N}\left|a_{k}-s_{k}\right|+\sigma_{j}=\left|a_{j 0}\right|+\sum_{k=1}^{N}\left|a_{k}\right|-1+\sigma_{j}<r+\varepsilon .
$$

Clearly

$$
\sum_{k=0}^{N}\left|s_{k}\right| \leqslant 1
$$

Case II. Suppose $\sigma<1$. This time, we put $s_{k}=a_{k}$ for $1 \leqslant k \leqslant N$. Choosing s_{0} is a little more difficult. First note that, for all $j>M$, $b_{j}=r+\varepsilon-\sigma_{j}>0$. From (2) it follows that $-a_{j 0} \leqslant r+1-\sigma-\sigma_{j}$ and so

$$
-(1-\sigma) \leqslant a_{j 0}+b_{j} .
$$

Similarly $a_{f 0}-b_{i} \leqslant 1-\sigma$ and so

$$
\sup \left(\left\{a_{j 0}-b_{j}: j>M\right\} \cup\{-(1-\sigma)\}\right) \leqslant \inf \left(\left\{a_{j 0}+b_{j}: j>M\right\} \cup\{1-\sigma\}\right)
$$

Hence we can find a real number s_{0} satisfying

$$
-(1-\sigma) \leqslant s_{0} \leqslant 1-\sigma
$$

and

$$
a_{j 0}-\left(r+\varepsilon-\sigma_{j}\right) \leqslant s_{0} \leqslant a_{j 0}+\left(r+\varepsilon-\sigma_{j}\right),
$$

for all $j>M$. Then, as in the previous case, we have

$$
\left|a_{j 0}-s_{0}\right|+\sum_{k=1}^{N}\left|a_{k}-s_{k}\right|+\sigma_{j}=\left|a_{j 0}-s_{0}\right|+\sigma_{j} \leqslant r+\varepsilon
$$

and

$$
\sum_{k=0}^{N}\left|s_{k}\right|=\left|s_{0}\right|+\sigma \leqslant 1
$$

Now define $T=\left(t_{j k}\right)$ by

$$
\begin{array}{ll}
t_{j k}=u_{j k} /(r+1) & \text { for } j \leqslant M \\
t_{i k}=s_{k} & \text { for } j>M \quad \text { and } \quad k \leqslant N
\end{array}
$$

and

$$
t_{j k}=0 \quad \text { for } \quad j>M \quad \text { and } \quad k>N
$$

Then the image of T lies in the linear span of $\left\{e_{,}, e_{1}, e_{2}, \ldots, e_{M}\right\}$, so T is compact. Clearly $\|T\| \leqslant 1$. Furthermore, for $j \leqslant M$,

$$
\sum_{k=0}^{\infty}\left|a_{j k}-t_{j k}\right|=\frac{r}{r+1} \sum_{k=0}^{\infty}\left|a_{i k}\right| \leqslant r
$$

and for $j>M$,

$$
\begin{aligned}
\sum_{k=0}^{x}\left|a_{j k}-t_{j k}\right| & <\left|a_{j 0}-s_{0}\right|+\sum_{k=1}^{N}\left|a_{k}-s_{k}\right|+\varepsilon+\sigma_{i} \\
& \leqslant r+2 \varepsilon .
\end{aligned}
$$

Thus $\|T-A\| \leqslant r+2 \varepsilon$.
We have now shown that

$$
K(\mathscr{C}) \cap B(A, r+2 \varepsilon) \cap B(0,1)
$$

is non-empty. By [17, Theorem 3] this establishes the $1 \frac{1}{2}$-ball property.
By severely restricting the domain space, we can completely dispense with the extremally disconnected assumption on the range space. To be precise, we can show that $K\left(\mathscr{C}_{0}, C(X)\right)$ has the $1 \frac{1}{2}$-ball property in $B\left(\mathscr{C}_{0}, C(X)\right)$, at least if the scalars are real. Before proving this, we discuss the difficulties that arise in the complex case.

If S is any metric space, let 2^{s} denote the collection of closed, bounded, non-empty subsets of S. It is standard to make 2^{s} into a metric space by giving it the Hausdorff metric, defined for $A, B \in 2^{s}$ by

$$
d(A, B)=\sup (\{d(x, A): x \in B\} \cup\{d(x, B): x \in A\})
$$

If E is a Banach space and $f \in E$, let us define

$$
\Psi=\Psi_{f}:\left[(\|f\|-1)^{+}, \infty\right) \rightarrow 2^{E}
$$

by

$$
\Psi(r)=B(0,1) \cap B(f, r) .
$$

With the usual lack of imagination, we will say that E has property (P) if the family of maps $\left\{\Psi_{f}: f \in E\right\}$ is uniformly equicontinuous. Recall that E is said to have the 3.2 intersection property if, whenever B_{1}, B_{2}, B_{3} are closed balls in E which meet pairwise, then

$$
B_{1} \cap B_{2} \cap B_{3} \neq \varnothing .
$$

If E has the 3.2 intersection property, it is easy to verify that

$$
d\left(\Psi_{f}(r), \Psi_{f}(r+\varepsilon)\right) \leqslant \varepsilon .
$$

Thus, the 3.2 intersection property implies (P). It follows [9, Theorem 4.6(c)] that the real Banach space l_{1} has (P).

Conjecture 8. The complex Banach space l_{1} has property (P).
This ideal is crucial in the proof of the next theorem. We have been unable to determine whether Conjecture 8 is true or false.
Assuming property (P) for l_{1}, we will show that $K\left(\mathscr{C}_{0}, C(X)\right)$ has the $1 \frac{1}{2}$-ball property in $B\left(\mathscr{C}_{0}, C(X)\right)$ for any compact Hausdorff space X. Since l_{1} is the dual of \mathscr{C}_{0}, we may identify $B\left(\mathscr{C}_{0}, C(X)\right)$ with the sup-normed space $C W^{*}\left(X, l_{1}\right)$ of weak* continuous maps $f: X \rightarrow l_{1}$, and $K\left(\mathscr{C}_{0}, C(X)\right)$ with the subspace $C\left(X, l_{1}\right)$ of norm continuous maps. The identification is the obvious one, given by

$$
(T a)(x)=f(x)(a) \quad \text { for all } a \in \mathscr{C}_{0}, x \in X
$$

and $T: \mathscr{C}_{0} \rightarrow C(X)$.
Now fix $f \in C W^{*}\left(X, l_{1}\right)$ and put

$$
d(x)=\limsup _{y \rightarrow x}\|f(y)-f(x)\| .
$$

Replacing f with $f-g$, where $g \in C\left(X, l_{1}\right)$, leaves the value of $d(x)$ unaltered. The idea of introducing $d(\cdot)$ is due to Mach [11], who used similar techniques to prove the proximinality of $K\left(\mathscr{C}_{0}, C(X)\right)$, for either scalar field.

Lemma 9. If $x, y \in l_{1}=\mathscr{C}_{0}^{*}$ and $x_{a} \rightarrow 0$ weak *, then

$$
\left\|x_{\alpha}+y\right\|-\left\|x_{\alpha}\right\| \rightarrow\|y\| .
$$

Proof. For any $A \subset \mathbb{N}$ we have

$$
\left|\left\|x_{\alpha}+y\right\|-\left\|x_{x}\right\|-\|y\|\right| \leqslant \sum_{n \in A} 2\left|x_{x}(n)\right|+\sum_{n \notin A} 2|y(n)| .
$$

A routine truncation argument completes the proof.
If we regard l_{1} as the dual of some other Banach space, such as \mathscr{C}, then Lemma 9 does not hold.

Lemma 10. Let f, d be as above and fix $x \in X$. Then
(i) for any $y \in X$,

$$
\lim \sup \|f(z)-f(x)\|=\|f(y)-f(x)\|+d(y)
$$

$$
z \rightarrow y
$$

(ii) for any $y \in X$,

$$
\lim \sup \|f(z)\|=\|f(y)\|+d(y) .
$$

(iii)

$$
d(x)=\lim \sup (\|f(x)-f(y)\|+d(y)) .
$$

(iv) for any $g \in C\left(X, l_{1}\right)$,

$$
\|f(x)-g(x)\|+d(x) \leqslant\|f-g\| .
$$

Proof. (i) Since f is weak*-continuous, the previous lemma gives

$$
\begin{aligned}
\limsup _{z \rightarrow y}\|f(z)-f(x)\|= & \lim _{z \rightarrow y}(\|f(z)-f(x)\|-\|f(z)-f(y)\|) \\
& +\limsup _{z \rightarrow y}\|f(z)-f(y)\| \\
= & \|f(y)-f(x)\|+d(y) .
\end{aligned}
$$

(ii) The constant function $g=f(x)$ certainly lies in $C\left(X, l_{1}\right)$. Replace f by $f-g$ in (i).
(iii) From the definition of $d(\cdot)$, and (i), we have

$$
\begin{aligned}
d(x) & \left.\leqslant \lim \sup _{y \rightarrow x}\|f(x)-f(y)\|+d(y)\right) \\
& =\limsup _{y \rightarrow x} \lim _{z \rightarrow y} \sup _{y}\|f(z)-f(x)\| \\
& \leqslant \limsup \|f(z)-f(x)\|=d(x) .^{z \rightarrow x}
\end{aligned}
$$

(iv) Assume without loss of generality that $g=0$. Then, by (ii),

$$
\|f(x)\|+d(x)=\limsup _{y \rightarrow x}\|f(y)\| \leqslant\|f\|
$$

Theorem 11. Let X be any compact Hausdorff space. Then $K\left(\mathscr{C}_{0}, C(X)\right)$ has the $1 \frac{1}{2}$-ball property in $B\left(\mathscr{C}_{0}, C(X)\right)$ if the scalars are real, or if Conjecture 8 is true.

Proof. Suppose that $C\left(X, l_{1}\right) \cap B(f, r) \neq \varnothing$ and $\|f\| \leqslant r+1$. We must show that

$$
C\left(X, l_{1}\right) \cap B(0,1) \cap B(f, r) \neq \varnothing
$$

The last part of Lemma 10 , with $g \in C\left(X, l_{1}\right) \cap B(f, r)$, shows that $r \geqslant d(x)$ for all $x \in X$. With $g=0$ it shows that

$$
\|f(x)\| \leqslant r+1-d(x)
$$

for each x. Thus we may define $\Psi: X \rightarrow 2^{\ell_{1}}$ by

$$
\Psi(x)=B(0,1) \cap B(f(x), r-d(x))
$$

Clearly each $\Psi(x)$ is closed, convex, and non-empty; we claim that Ψ is lower semicontinuous. This means that if K is any closed subset of l_{1}, we have to show that $\{x: \Psi(x) \subseteq K\}$ is closed.

Suppose then that $x_{x} \rightarrow x$ in X, and that each $\Psi\left(x_{x}\right) \subseteq K$. Choose $a \in \Psi(x)$ and put

$$
\lambda_{x}=\left\|a-f\left(x_{x}\right)\right\|+d\left(x_{x}\right)-r
$$

By Lemma 10(iii)

$$
\lim \sup \lambda_{x} \leqslant\|a-f(x)\|+d(x)-r \leqslant 0
$$

Hence $\varepsilon_{\alpha}=\max \left\{\lambda_{x}, 0\right\} \rightarrow 0$ and also

$$
\left\|a-f\left(x_{\alpha}\right)\right\|=r-d\left(x_{\alpha}\right)+\lambda_{\alpha} \leqslant r-d\left(x_{\alpha}\right)+\varepsilon_{\alpha}
$$

and $\|a\| \leqslant 1$. Let

$$
\begin{aligned}
\delta(\varepsilon)= & \sup \left\{d(B(0,1) \cap B(g, s), B(0,1) \cap B(g, s+\varepsilon)): g \in l_{1},\right. \\
& s>0,\|g\| \leqslant s+1\} .
\end{aligned}
$$

Assuming l_{1} has property (P), we have $\delta(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$. Thus, from the definition of $\delta(\varepsilon)$, we can find a_{x} with $\left\|a_{\alpha}\right\| \leqslant 1$,

$$
\left\|a_{\alpha}-f\left(x_{\alpha}\right)\right\| \leqslant r-d\left(x_{\alpha}\right)
$$

and $\left\|a-a_{x}\right\| \leqslant \delta\left(\varepsilon_{\chi}\right)$. Then

$$
a_{x} \in \Psi\left(x_{x}\right) \subseteq K
$$

and $a_{x} \rightarrow a$. This proves that $\Psi(x) \subseteq K$. Michael's theorem [14] now gives us a continuous selection for Ψ, which clearly belongs to

$$
C\left(X, l_{1}\right) \cap B(0,1) \cap B(f, r)
$$

To show that the preceding examples are not M-ideals, first note that there is a function $f \in C W^{*}\left(X, l_{1}\right)$ whose range contains the standard basis $\left\{e_{1}, e_{2}, \ldots\right\}$. This is easy to see if X contains a convergent sequence of distinct points. For the general case, recall that every compact space can be mapped onto a Hausdorff space which contains a convergent sequence.

Choose $x_{n} \in X$ so that $f\left(x_{n}\right)=e_{n}$, and let LIM $\in l_{x}^{*}$ be any Banach limit. We define two functionals $\Psi, \phi \in C W^{*}\left(X, l_{1}\right)^{*}$ by

$$
\Psi(g)=\operatorname{LIM}_{n} g_{1}\left(x_{n}\right) \quad \text { and } \quad \phi(g)=\operatorname{LIM}_{n}\left\{g_{1}\left(x_{n}\right)+g_{n}\left(x_{n}\right)\right\}
$$

It is clear that $\|\Psi\| \leqslant 1,\|\phi\| \leqslant 1$ and that $\Psi(f)=0 \neq 1=\phi(f)$. If $g \in C\left(X, I_{1}\right)$ then $g(X)$ is norm compact in l_{1}, and so $g_{n}(x) \rightarrow 0$ (as $n \rightarrow \infty$) uniformly with respect to $x \in X$. It follows that

$$
\Psi\left|C\left(X, l_{1}\right)=\phi\right| C\left(X, l_{1}\right)=\eta
$$

say. If $g \in C\left(X, l_{1}\right)$ is the constant function $g(x)=e_{1}$ then $\|g\|=n(g)=1$. Thus ϕ and Ψ are two distinct norm-preserving extensions of η.

So $K\left(\mathscr{C}_{0}, C(X)\right)$ does not have the unique extension property in $B\left(\mathscr{C}_{0}, C(X)\right)$. It follows [17, Theorem 4] that $K\left(\mathscr{C}_{0}, C(X)\right)$ is not an M-ideal in $B\left(\mathscr{C}_{0}, C(X)\right)$.

The following result provides some evidence that Theorem 11 may be true for both scalar fields.

Proposition 12. For either scalar field, $K\left(\mathscr{C}_{0}, \mathscr{C}\right)$ has the $1 \frac{1}{2}$-ball property in $B\left(\mathscr{C}_{0}, \mathscr{C}\right)$.

Proof. Again following [15], any $A \in B\left(\mathscr{C}_{0}, \mathscr{C}\right)$ corresponds to an infinite matrix $\left(a_{j k}\right)$, where $j=1,2,3, \ldots$ and $k=1,2,3 \ldots$. Imitating the proof of Theorem 7, we find that some simplifications are caused by the absence of zeroth columns in elements of $B\left(\mathscr{C}_{0}, \mathscr{C}\right)$. In particular, it is not necessary to define s_{0}. Doing so, in Case II of the previous proof, was the only point at which the scalars were required to be real.

We recall that for any Banach space $E, K\left(E, \mathscr{C}_{0}\right)$ is actually an M-ideal in $B\left(E, \mathscr{C}_{0}\right)$. This was observed independently by several authors $[8,12,16]$. To see how special the role of \mathscr{C}_{0} is in this result, we note that $K\left(L_{p}(S, \mu), C(X)\right)$ fails the $1 \frac{1}{2}$-ball property in $B\left(L_{p}(S, \mu), C(X)\right)$, whenever $L_{P}(S, \mu)$ and $C(X)$ are infinite dimensional, and $1<p<\infty$. By Proposition 3, and the remarks preceding Lemma 9, it suffices to show that
$C\left(X, l_{p}\right)$ fails the $1 \frac{1}{2}$-ball property in $C W^{*}\left(X, l_{p}\right)$. This follows from a generalization of the argument of [16, p. 296].

We finish with another negative result.
Proposition 13. Suppose X and Y both contain uncountable, metrizable, closed subsets. Then $K(C(X), C(Y))$ is not proximinal in $B(C(X), C(Y))$.
Proof. Benyamini [2, Appendix] proved this in the case $X=Y=[0,1]$. If $[0,1]$ is replaced by the Cantor set, Z, throughout the proof, it works just as well. By the Borsuk-Dugundji extension theorem [13, Sect. 7], the result holds whenever X and Y contain homeomorphic copies of Z. But every uncountable compact metric space contains a copy of Z (this follows from the Cantor-Bendixson theorem and a standard argument).

References

1. S. Axler, N. Jewell, and A. Shields, The essential norm of an operator and its adjoint, Trans. Amer. Math. Soc. 261 (1980), 159-167.
2. M. Feder, On a certain subset of $L_{1}(0,1)$ and non-existence of best approximation in some spaces of operators, J. Approximation Theory 29 (1980), 170-177.
3. M. Hasumi, The extension property of complex Banach spaces, Tohoku Math. J. 10 (1958), 135-142.
4. J. Hennefeld, M-ideals, related spaces and some approximation properties, Lecture Notes in Math. Vol. 991, pp. 96-102, Springer-Verlag, New York/Berlin, 1983.
5. R. Holmes, B. Scranton, and J. Ward, Approximation from the space of compact operators and other M-ideals, Duke Math. J. 42 (1975), 259-269.
6. H. E. Lacey, "The Isometric Theory of Classical Banach Spaces," Springer-Verlag, Berlin, 1974.
7. K. S. Lau, On a sufficient condition for proximity, Trans. Amer. Math. Soc. 251 (1979), 343-356.
8. \AA. Lima, Intersection properties of balls in spaces of compact operators, Ann. Inst. Fourier (Grenoble) 28 (1978), 35-65.
9. J. Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc. 48 (1964).
10. D. H. Luecking, The compact Hankel operators form an M-ideal in the space of Hankel operators, Proc. Amer. Math. Soc. 79 (1980), 222-224.
11. J. MaCh, On the proximinality of compact operators with range in $C(S)$, Proc. Amer. Math. Soc. 72 (1978), 99-104.
12. J. Mach and J. D. Ward, Approximation by compact operators on certain Banach spaces, J. Approx. Theory 23 (1978), 274-286.
13. E. Michael, Some extension theorems for continuous functions, Pacific J. Math. 3 (1953) 789-806.
14. E. Michael, Selected selection theorems, Amer. Math. Monthly 63 (1956), 233-238.
15. A. E. Taylor, "Introduction to Functional Analysis," Wiley, New York, 1958.
16. D. T. Yost, Best approximation and intersections of balls in Banach spaces, Bull. Austral. Math. Soc. 20 (1979), 285-300.
17. D. T. Yost, The n-ball properties in real and complex Banach spaces, Math. Scand. 50 (1982), 100-110.
