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A closed subspace M of a Banach space E is said to be proximinal if
every a E E admits a closest point in M, i,e., a point x E M for which
Iia - xii = d(a, M), the distance of a from M. Many authors have con­
sidered the problem of determining whether K(E, F), the space of compact
operators from E to F, is proximinal in B(E, F), the corresponding space of
bounded linear operators. We attempt to solve this problem for the case
when E = C(X) and F = C( Y) are the usual function spaces over compact
Hausdorff spaces X and Y. If Y is extremally disconnected, we can com­
pletely characterize those X for which K( C(X), C( Y)) is proximinal. Except
where stated otherwise, our results are valid for both real and complex
scalars.

In each case, we will establish proximinality of the compact operators by
establishing the 1~-ball property. Recall that a subspace M has the 1~-ball
property in E if, whenever a E E, r ~ 0, Iiall < r + 1 and the closed ball
B(a, r) meets M, then M n B(O, 1) n B(a, r) is non-empty. Every subspace
with the 1~-ball property is proximinal, and even more is true.

PROPOSITION 1 [16, Theorem 1.2]. Suppose M has the 1~-hall property
in E. Then there exists a continuous, homogeneous map Jl: E ---> M satisfying
Ilx-Jl(xlll =d(x, M) and also Jl(x+m)=Jl(x)+m whenever mEM.

Proposition 1 generalizes the corresponding result for M-ideals [5]. A
number of authors, including [I, 4, 10, II, 12J, have established
proximinality of K(E, F), for suitable E and F, by showing that K(E, F) is
an M-ideal in B(E, F). Rather than repeat the definition of M-ideals, we
simply recall that every M-ideal has the l!-ball property [17].

Before starting our work, we need the following two observations. They
are well known and easy to prove.
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PROPOSITION 2. The map TI-> T* I F is a linear isometry from B(E, F*)
onto B(F, E*) which sends K(E, F*) to K(F, E*).

PROPOSITION 3. Let M and N he the ranges oj' contractive projections on
E and F, respectively. If K(E, F) is proximinal (or has the 1~-hall property) in
B(E, F), then the same is true oj' K(M, N) in B(M, N).

Our first result actually concerns certain spaces of measurable functions.
Case (iv) improves a result proved for real scalars by Lau
[7, Theorem 6.4]. Case (i) is obviously a special case of (iv), and is stated
separately only to streamline the proof.

THEOREM 4. In each oj' the following cases, K(E, F) has the q-hall
property in B(E, F):

(i) £=/ 1(:1) and F=/\(T)for discrete sets T and A.

(ii) £* = 11(r) and F= C( Y), where T is discrete and Y is extremally
disconnected.

(iii) E* = II(T) and F= L f. (S, 11), where T is discrete and (S, 11) is any
measure space.

(iv) £= LI(S, 11) and F= II(T), where (S, 11) is any measure space and
T is discrete.

Proof: (i) This is a trivial generalization of [16, Proposition 2.8].

(ii) If Y is the StoneCech compactification of some discrete set T,
then C( Y) = I x (r), and the result follows from case (i) and Proposition 2.
In general, the result follows from Proposition 3 and the fact that C( Y) is
the range of a contractive projection on some If (T) [6, Corollary 11.2].

(iii) This is a special case of (ii). It is worth recalling that a Banach
space is isometric to the range of a contractive projection on every
superspace if and only if it is isometric to C( Y), for some extremally dis­
connected y. Every space L, (S, 11) has this property. See [3; 6, Sect. 11].

(iv) This follows from Proposition 2 and case (iii). I

Although the proof of [16, Proposition 2.8] was constructive, the proof
of Theorem 4 is not.

Now we can give the promised results about spaces of continuous
functions.

THEOREM 5. If Y is extremally disconnected, then the following are
equivalent:

(i) X is dispersed (i.e., every subset contains an isolated point)
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(ii) K( C( X), C( Y)) has the 1~-ball property in B( C( X), C( Y))

(iii) K( C( X), C( Y)) is proximinal in B( C(X), C( Y)).
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Proof (i) => (ii). This follows from Theorem 4 and [6, Theorems 8.9
and 8.10].

(ii) => (iii). This is Proposition 1.

(iii)=> (i). Feder [2, Theorem 3] proved that KU"L,(O, I)) is not
proximinal in BUI, L 1(0, I)). If X is not dispersed, then L, (0, 1) is
isometric to the range of a contractive projection on C(X)* [6, Theorems
14.11 and 18.5]. Propositions 2 and 3 then show that K(C(X), rf:) is not
proximinal in B( C(X), I"). Since the Stone~Cech compactification of
the integers is a continuous image of Y, I ex is the range of a contractive
projection on C( Y)' Another application of Proposition 3 completes the
proof. I

It is natural to ask if these results hold without the assumption that Y is
extremally disconnected. For the I-point compactification of the integers,
they do not.

EXAMPLE 6. If the scalars are complex, then K('f,') does not have the
q-ball property in B(<"fo').

Proof We follow the notation of Taylor [15, Sect. 4.51]. If (~I , ~ 2,... ) is
any sequence in (fo, we let ~o denote its limit. Each A E B('f,') corresponds to
an infinite matrix (aid, where j = 1,2,3, ... and k = 0, 1,2,..., for which
L;:~Oa,k converges as j-H:r:, as does (aidi~x for k=I,2,3, .... If
(tl,,) = A(~,,) then, of course,

-£

l1i = I aik ~k
k~()

The norm of A is given by

for j= I, 2, 3,....

x x

IIA II = sup I laikl,
J~' k~()

but there is no simple formula for d(A, K('f,')).
Let {e, e l' e2 ,... ) be the usual basis for 'f,', where e = (1, 1, 1,... ). Define

A : '/: --> 'f,' by

Ae" = ( -1 )" ell

for n? 2 and Ae = (i +~) e. It is routine to verify that IIA II < 3 and that
K(rri) n B(A, 2) is non-empty. However,

K('f,') n B(A, 2) n B(O, 1) = 0.
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To see this, suppose TEK(((,)I\B(A,2). Then

f

I IaIk - I,k I ~ 2
k 0

for all j, so

forj even

and

forj odd, j # I.

Let
II = lim Ijl'

,--. f

Since T is compact, 10 = lim / _; f. If0 exists, and also lim j ~ f. til = O. Thus

This forces 10 = i and 11 = 1, so T ric B( 0, 1). I
The classical sequence space ((, seems to have received no attention in the

literature. Curiously, we have a positive result (with a constructive proof) if
the scalars are real.

THEOREM 7. For real scalars, K(et) does have the q-ba// property in
B(((').

Proof If 5 = (sjd has the property that, for some N, Sjk = 0 for all
k> N, then 5 is a compact operator. Conversely, the set of operators with
this property is dense in K(Cf,').

Now suppose we are given AEBr(,) with IIAII<r+l and
K(et') 1\ B(A, r) # 0, and choose I: so that 0 < f: < r + 1- IIA II. Then

,
I Ia jk I ~ r + 1- /:
k~O

for allj, and also IIA - 511 < r + f; for some 5 of the above form. We may
also suppose that SjO = S for all but finitely many j.

Let
ak = lim ajk ,

/-..... x

for 1~ k ~ N. Then choose M so that, if j > M, then lak - ajkl < GIN and
Sjll = s. Next, put

(II = I lajkl
k> ,,>/

for allj,
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and

We now have, for allj>M,

and

There are two cases to consider, depending on the value of a.

Case 1. Suppose a ~ 1. Then we find n ~ Nand), E [0, 1] so that

11--1

L lakl + ),la,,1 = 1.
k oc I

Put
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(1 )

(2)

and

for I ~ k < n, Sfl = Ail"

Then, for j > M,

for k > n or k=O.

Clearly

N N

laiO-sol + L lak-skl +aj = laiOI + L lak l-l +ai<r+<:.
k-l k~1

N

L ISkl ~ 1.
k==O

Case II. Suppose a < 1. This time, we put Sk = ak for 1~ k ~ N. Choos­
ing So is a little more difficult. First note that, for all j> M,
bi=r+<:~ai>O.From (2) it follows that -aiO~r+ l-a-aj and so

-- (1 - a) ~ aiO + bi.

Similarly alo - b i ~ 1 - a and so

Hence we can find a real number So satisfying

-(l-a)~so~ I-a

and

aiO - (r + <: - ail :s: so:S: aiO + (r + <: - 0),
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for all j > M. Then, as in the previous case, we have

N

lalo~sol + I la, --.1',1 +(Ji= la1O-sol +(JI~r+;;
, I

and
.\

I 1.1',1 = 1.1'01 +(J~ 1.
, ~ 0

Now define T = (tid by

for j~ M,

for j> M and k ~ N,

and

for j> M and k > N.

Then the image of T lies in the linear span of {c, c l , C2,"" C M }, so T is
compact. Clearly II Til ~ 1. Furthermore, for j ~ M,

and for j> M,

y N

I lal , - tl,1 < laio - sol + I la, - .1',1 + f; + (Ji
, 0 '~I

Thus liT - A II ~ r + 21:.
We have now shown that

K(Yi')nB(A,r+2c;)nB(O,I)

is non-empty. By [17, Theorem 3] this establishes the 1~-ball property. I
By severely restricting the domain space, we can completely dispense

with the extremally disconnected assumption on the range space. To be
precise, we can show that K(Yi'o, C(X)) has the 1~-ball property in
B( (&;), C(X)), at least if the scalars are real. Before proving this, we discuss
the difficulties that arise in the complex case.

I[ S is any metric space, let 2' denote the collection of closed, bounded,
non-empty subsets of S. It is standard to make 2' into a metric space by
giving it the Hausdorff metric, defined for A, BE 2' by

d(A, B) = sup( (d(x, A): x E B} u {d(x, B): x E A}).
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If E is a Banach space and fEE, let us define

by

'P(r) = B(O, 1) n B(f, r).
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With the usual lack of imagination, we will say that E has property (P) if
the family of maps {'Pf:fE E} is uniformly equicontinuous. Recall that E is
said to have the 3.2 intersection property if, whenever B I , B2 , B3 are closed
balls in E which meet pairwise, then

If E has the 3.2 intersection property, it is easy to verify that

Thus, the 3.2 intersection property implies (P). It follows [9,
Theorem 4.6(c)] that the real Banach space I j has (P).

Conjecture 8. The complex Banach space II has property (P).
This ideal is crucial in the proof of the next theorem. We have been

unable to determine whether Conjecture 8 is true or false.
Assuming property (P) for II, we will show that K(C(j(h C(X)) has the

1~-ball property in B(C(jo, C(X)) for any compact Hausdorff space X. Since
II is the dual of C(jo, we may identify B(C(jo, C(X)) with the sup-normed
space CW*(X, II) ofweak* continuous mapsIX->/ j , and K(C(jo,C(X))
with the subspace C(X, II) of norm continuous maps. The identification is
the obvious one, given by

(Ta)(x) =f(x)(a)

and T: C(jo -> C( X).
Now fix fE CW*(X, II) and put

for all a E C(jo, X EX

d(x) = lim sup Ilf(y) -f(x)ll.
y-x

Replacing f with f-g, where gE C(X, Itl, leaves the value of d(x)
unaltered. The idea of introducing d(') is due to Mach [11], who used
similar techniques to prove the proximinality of K(C(jo, C(X)), for either
scalar field.

LEMMA 9. If x, yEll = C(jo* and x" -> °weak *, then

Ilxa +yll - IlxJ -> Ilyli.
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Proof, For any A c N we have

Illx,+yll-llx,II-llylll~I 2Ix,(n)l+ I 2Iy(nll.
nEA n¢:A

A routine truncation argument completes the proof. I
If we regard II as the dual of some other Banach space, such as C(;', then

Lemma 9 does not hold.

LEMMA 10. Let!, d be as above andfix x E X. Then

(i) for any y E X,

lim supllf(z) -f(xlll = Ilf(y) -f(x)11 + d(y).
::--+1'

(ii) for any y E X,

lim supllf(z)11 = Ilf(y)11 + d(y).

(iii) d(x) = lim sup( Ilf(x) - f(ylll + d(y)).

(iv) for any gEC(X, IJl,

Ilf(x) - g(x)11 + d(x) ~ Ilf- gil·

Proof, (i) Sincer is weak *-continuous, the previous lemma gives

lim supllf(z)-f(x)11 = lim(llf(z)-f(x)II-llf(z)-f(y)ll)
::-y

+ lim supllf(z) -f(y)11
:: --+ I'

= II/tv) - f(x)11 + d(y).

(ii) The constant function g=f(x) certainly lies in C(X, IJl. Replace
fby f-g in (i).

(iii) From the definition of d('), and (i), we have

d(x) ~ lim sup( Ilf(x) -fly )11 + d(y))
\'-x

= lim sup lim supllf(z) - f(x)11
::---+\'

~ lim supllf(z) -f(x)11 = d(x).
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(iv) Assume without loss of generality that g=O. Then, by (ii),

Ilf(x)11 + d(x) = lim supllf(y)11 ~ Ilfll.
y_x
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THEOREM 11. Let X be any compact Hausdorff space. Then K(C€o, C(X))
has the q-ball property in B(C€o, C(X)) if the scalars are real, or if Conjec­
ture 8 is true.

Proof Suppose that C(X, Id n B(f, r) i= 0 and Ilfll ~ r + 1. We must
show that

C(X,/})nB(0,I)nB(f,r)i=0·

The last part of Lemma 10, with g E C(X, Id n B(f, r), shows that r> d(x)
for all x E X. With g = 0 it shows that

Ilf(x)11 ~ r + 1 - d(x),

for each x. Thus we may define 'P: X ---> 2'[ by

'P(x) = B(O, 1) n B(f(x), r - d(x)).

Clearly each 'P(x) is closed, convex, and non-empty; we claim that 'P is
lower semicontinuous. This means that if K is any closed subset of I" we
have to show that {x: 'P(x) s; K} is closed.

Suppose then that X,--->x in X, and that each 'P(x,)s;K. Choose
a E 'P(x) and put

,1,= Ila-f(x,)11 +d(x,)-r.

By Lemma 10(iii)

lim sup )., ~ Iia -f(x)11 + d(x) - r ~ O.

Hence e, = max {A" 0 } ---> 0 and also

Iia - f(x')ll = r - d(x,) + )., ~ r - d(x,) + e,

and Iiall ~ 1. Let

6(e) = sup{d(B(O, 1) n B(g, s), B(O, 1) n B(g, s + e)): gE I"

s>O, Ilgll ~s+ I}.

Assuming 11 has property (P), we have 6(e) ---> 0 as e ---> o. Thus, from the
definition of 6(e), we can find a, with Ila,11 ~ 1,

Ila,-f(x')ll ~r-d(x,)

and Iia - a,ll ~ 6(e,). Then
a, E 'P(x,) S; K
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and a, ---> a. This proves that 'P( x) s K. Michael's theorem [14J now gives
us a continuous selection for 'P, which clearly belongs to

C(X, II) (\ B(O, I) (\ B(f; r). I

To show that the preceding examples are not M-ideals, first note that
there is a functionfE CW*(X, Id whose range contains the standard basis
fe l , e 2 , ... }. This is easy to see if X contains a convergent sequence of dis­
tinct points. For the general case, recall that every compact space can be
mapped onto a Hausdorff space which contains a convergent sequence.

Choose x" E X so that f(x,,) = e,,, and let LIM E I~ be any Banach limit.
We define two functionals 'P, 1J E CW*(X, 1])* by

'P(g) = LIM gdx,,) and 1J(g) = LIM {g](x,,) +g,,(x,,)}.
"

It is clear that 11'P11:::;1, 111J11:::;1 and that 'P(f)=0#-1=1J(f). If
g E C(X, II) then g(X) is norm compact in I" and so g,,(x) ---> 0 (as n ---> (x;)
uniformly with respect to x E X. It follows that

say. If gEC(X, II) is the constant function g(x)=e] then Ilgll =n(g)= 1.
Thus 1J and 'P are two distinct norm-preserving extensions of 1].

So K( 1(50' C( X)) does not have the unique extension property III

B(Cfjo, C(X)). It follows [17, Theorem 4J that K(l(5o, C(X)) is not an
M-ideal in B(l(5o, C(X)).

The following result provides some evidence that Theorem I J may be
true for both scalar fields.

PROPOSITION 12. For either scalar field, K(Cf5o,C(5) has the I~-hall

property in B((r6o, Cf5').

Proof Again following [15J, any A E B(Cf5~), C(5) corresponds to an
infinite matrix (a jk ), where j = J, 2, 3, ... and k = I, 2, 3.... Imitating the proof
of Theorem 7, we find that some simplifications are caused by the absence
of zeroth columns in elements of B(((jo, ((j). In particular, it is not necessary
to define so. Doing so, in Case II of the previous proof, was the only point
at which the scalars were required to be real. I

We recall that for any Banach space E, K(E, 1(50) is actually an M-ideal in
B(E, ((jo). This was observed independently by several authors [8, 12, 16].
To see how special the role of %J is in this result, we note that
K(Lp(S, /1), C(X)) fails the I!-ball property in B(Lp(S, /1), C(X)), whenever
Lp(S, /1) and C(X) are infinite dimensional, and 1 <p < 00. By
Proposition 3, and the remarks preceding Lemma 9, it suffices to show that



APPROXIMATION BY COMPACT OPERATORS 109

C(X,lp) fails the 1!-ball property in CW*(X,lp)' This follows from a
generalization of the argument of [16, p. 296].

We finish with another negative result.

PROPOSITION 13. Suppose X and Y both contain uncountable, metrizable,
closed subsets. Then K( C(X), C( Y)) is not proximinal in B( C(X), C( Y)).

Proof Benyamini [2, Appendix] proved this in the case
X = Y = [0, 1]. If [0, 1] is replaced by the Cantor set, Z, throughout the
proof, it works just as well. By the Borsuk-Dugundji extension theorem
[13, Sect. 7], the result holds whenever X and Y contain homeomorphic
copies of Z. But every uncountable compact metric space contains a copy
of Z (this follows from the Cantor-Bendixson theorem and a standard
argument). I
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